Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*E*)-2,5-Dimethoxybenzylidene]indan-1-one

Abdullah Mohamed Asiri,^a Mehmet Akkurt,^b* Mohie Aldin M. Zayed,^a Islam Ullah Khan^c and Muhammad Nadeem Arshad^c

^aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: akkurt@ercives.edu.tr

Received 11 March 2009; accepted 10 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.115; data-to-parameter ratio = 10.1.

In the title compound, $C_{18}H_{16}O_3$, the mean plane of the ninemembered indane system makes a dihedral angle of 3.71 (17)° with the benzene ring of the dimethoxyphenyl group. The molecular conformation is stabilized by intramolecular C– H···O hydrogen contacts. The crystal structure is stabilized by intermolecular C–H···O interactions, which link neighbouring molecules into one-dimensional extended chains along the [100] direction. In the structure, C–H··· π interactions are also observed.

Related literature

For styryl dyes and their applications, see: Ying *et al.* (1990); He *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For details of the Flack parameter, see: Flack & Schwarzenbach (1988).

Experimental

Crystal data

 $\begin{array}{l} C_{18} {\rm H}_{16} {\rm O}_{3} \\ M_{r} = 280.31 \\ {\rm Orthorhombic, } Pna2_{1} \\ a = 12.925 \ (3) \ {\rm \AA} \\ b = 20.163 \ (5) \ {\rm \AA} \\ c = 5.451 \ (1) \ {\rm \AA} \end{array}$

 $V = 1420.6 (5) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.38 \times 0.09 \times 0.04 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD area-
detector diffractometer1944 independent reflectionsAbsorption correction: none856 reflections with $I > 2\sigma(I)$ $R_{int} = 0.107$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	1 restraint
$vR(F^2) = 0.115$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^{-3}$
944 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
92 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7A \cdots O1^{i}$	0.97	2.47	3.259 (5)	139
$C10-H10\cdots O1$ $C10-H10\cdots O2$	0.93 0.93	2.52 2.30	2.891 (5) 2.710 (5)	104 106
$C7-H7B\cdots Cg1^{ii}$ $C17-H17C\cdots Cg1^{iii}$	0.97 0.96	2.59 2.73	3.459 (4) 3.504 (4)	150 138
		=		

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) x, y, z - 1; (iii) $-x + 1, -y + 1, z + \frac{1}{2}$. *Cg*1 is the centroid of the C11–C16 ring.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2077).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
- He, G. S., Bhawalker, J. D. & Shao, C. F. (1995). Appl. Phys. Lett. 65, 2433– 2437.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Ying, J. L., Zhu, Zh. H. & Yao, Z. G. (1990). Chem. J. Chin. Univ. 11, 286– 289.

Acta Cryst. (2009). E65, o1061 [doi:10.1107/S1600536809013579]

2-[(E)-2,5-Dimethoxybenzylidene]indan-1-one

A. M. Asiri, M. Akkurt, M. A. M. Zayed, I. U. Khan and M. N. . Arshad

Comment

Nonlinear optical (NLO) properties of organics have been the subject of numerous investigations in the recent years, due to their potential applications in the field of photonics. A good NLO organic material should generally contain donor and acceptor groups positioned at either ends of a conjugation path of appropriate length. The increased effective conjugation and hence, the large π -delocalization length, has been recognized as a factor leading to large third order nonlinearities. Styryl dyes are organic molecules possessing charge donor and acceptor groups, conjugated through π -electronic bridge, suitable for NLO device applications. They are widely used as optical recording medium in laser disks, laser dyes (Ying *et al.*, 1990) and optical sensitizers in various other fields (He *et al.*, 1995).

In the title compound (I) (Fig. 1), all bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The ninemembered indane ring is almost planar, with the maximum deviations of -0.017 (4) and 0.021 (4) Å for atoms C6 and C8, respectively. The mean plane of the indane ring makes a dihedral angle of $3.71 (17)^\circ$, with the benzene ring of the dimethoxy phenyl group.

The molecular conformation is stabilized by intramolecular C—H···O hydrogen contacts (Table 1). The crystal structure is stabilized by intermolecular C—H···O interactions, which link neighbouring molecules into 1-D extended chains along the [100] direction (Fig. 2). In the structure, C—H··· π interactions are also observed (Table 1).

Experimental

An equivalent molar quantities of 2,5-dimethoxybenzaldehyde (4.40 g, 26.5 mmol) and 1-indanone (3.5 g, 26.5 mmol) were dissolved in 25 ml e thanol, and then heated at reflux. Pipyridine (1 ml) was added to the solution, and reflux was continued for 5 h. The solution was cooled to room temperature, and the solid products were filtered, and washed with ethanol (25 ml) to give yellow crystals. [Yield: 5.79 g, 91%; m.p. 403 - 404 K]. IR (cm⁻¹) 1689 (C=O), 1614 (C=C). ¹H-NMR (CDCl₃): 3.82 (3H, s, CH₃O), 3.83 (3H, s, CH₃O), 4.04 (2H, s, CH₂), 6.83 (1H, d, J = 9 Hz), 6.94 (1H, dd, J1 = 1.8 Hz, J2 = 6 Hz), 7.23 (1H, d, J = 3 Hz), 7.40 (1H, dd, J = 7.2 Hz, J2 = 7.1 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.6 (1H, d, J = 4.2 Hz), 7.9 (1H, d, J = 9 Hz), 8.1 (1H, s, CH=C).

Refinement

All H atoms bonded to the C atoms were positioned geometrically, with C—H distances in the range 0.93–0.97 Å, and refined using a riding approximation model, with $U_{iso}(H) = 1.5U_{eq}$ of the carrier atom for methyl H and $1.2U_{eq}$ for the remaining H atoms. The calculation of the Flack (Flack & Schwarzenbach, 1988) parameter was suppressed by the use of the MERG 4 instruction in *SHELXL*97 (Sheldrick, 2008), as the lack of anomalous scatterers did not allow the determination of the absolute configuration from the X-ray measurements.

Figures

Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Fig. 2. The crystal packing of the title compound, viewed down the *c*-axis, showing intermolecular C—H···O interactions (dashed lines). H atoms not involved in the hydrogen bonding have been omitted for clarity.

2-[(E)-2,5-Dimethoxybenzylidene]indan-1-one

Crystal data	
$C_{18}H_{16}O_3$	$F_{000} = 592$
$M_r = 280.31$	$D_{\rm x} = 1.311 {\rm ~Mg~m^{-3}}$
Orthorhombic, <i>Pna2</i> ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 598 reflections
a = 12.925 (3) Å	$\theta = 2.6 - 18.0^{\circ}$
b = 20.163 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 5.451 (1) Å	T = 296 K
$V = 1420.6 (5) \text{ Å}^3$	Prism, yellow
Z = 4	$0.38 \times 0.09 \times 0.04 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer	856 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.107$
Monochromator: graphite	$\theta_{\text{max}} = 28.3^{\circ}$
T = 296 K	$\theta_{\min} = 2.6^{\circ}$
φ and ω scans	$h = -16 \rightarrow 17$
Absorption correction: none	$k = -26 \rightarrow 25$
8980 measured reflections	$l = -7 \rightarrow 4$
1944 independent reflections	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.037P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.4588 (2)	0.22227 (16)	0.5837 (6)	0.0619 (13)
O2	0.4627 (2)	0.38576 (15)	1.1861 (5)	0.0507 (11)
O3	0.8608 (2)	0.47706 (17)	1.0485 (6)	0.0683 (16)
C1	0.6059 (3)	0.2111 (2)	0.3166 (8)	0.0400 (16)
C2	0.5790 (3)	0.1610(2)	0.1549 (9)	0.0507 (17)
C3	0.6488 (3)	0.1442 (2)	-0.0268 (9)	0.0533 (17)
C4	0.7428 (4)	0.1762 (2)	-0.0452 (8)	0.0553 (19)
C5	0.7699 (3)	0.2264 (2)	0.1200 (8)	0.0460 (17)
C6	0.6999 (3)	0.2433 (2)	0.3014 (7)	0.0360 (14)
C7	0.7111 (3)	0.2962 (2)	0.4948 (7)	0.0347 (14)
C8	0.6098 (3)	0.2932 (2)	0.6309 (7)	0.0350 (14)
C9	0.5446 (3)	0.2392 (2)	0.5186 (7)	0.0423 (16)
C10	0.5726 (3)	0.3277 (2)	0.8213 (8)	0.0357 (14)
C11	0.6191 (3)	0.3804 (2)	0.9655 (7)	0.0327 (14)
C12	0.5612 (3)	0.4089 (2)	1.1572 (7)	0.0353 (14)
C13	0.6046 (3)	0.4569 (2)	1.3073 (8)	0.0423 (17)
C14	0.7049 (3)	0.4787 (2)	1.2631 (8)	0.0450 (17)

C15	0.7623 (3)	0.4521 (2)	1.0747 (9)	0.0430 (17)
C16	0.7202 (3)	0.4039 (2)	0.9271 (7)	0.0393 (16)
C17	0.4010 (3)	0.4138 (2)	1.3758 (8)	0.0570 (19)
C18	0.9112 (3)	0.4649 (3)	0.8234 (10)	0.072 (2)
H2	0.51570	0.13930	0.16830	0.0600*
H3	0.63220	0.11080	-0.13810	0.0640*
H4	0.78880	0.16430	-0.16890	0.0670*
H5	0.83340	0.24790	0.10800	0.0550*
H7A	0.76870	0.28660	0.60320	0.0410*
H7B	0.72130	0.33940	0.42110	0.0410*
H10	0.50600	0.31600	0.86900	0.0430*
H13	0.56670	0.47460	1.43690	0.0500*
H14	0.73350	0.51150	1.36190	0.0540*
H16	0.75940	0.38640	0.79940	0.0470*
H17A	0.43230	0.40480	1.53210	0.0860*
H17B	0.33300	0.39470	1.37100	0.0860*
H17C	0.39610	0.46090	1.35240	0.0860*
H18A	0.92540	0.41830	0.80830	0.1070*
H18B	0.97500	0.48920	0.81820	0.1070*
H18C	0.86750	0.47880	0.69060	0.1070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0348 (17)	0.084 (3)	0.067 (2)	-0.0157 (19)	0.0072 (17)	-0.021 (2)
02	0.0369 (17)	0.064 (2)	0.0512 (19)	-0.0076 (17)	0.0123 (17)	-0.0217 (17)
03	0.055 (2)	0.084 (3)	0.066 (3)	-0.0298 (19)	-0.003 (2)	-0.007 (2)
C1	0.050 (3)	0.038 (3)	0.032 (2)	0.004 (2)	-0.007 (3)	-0.005 (3)
C2	0.054 (3)	0.051 (3)	0.047 (3)	-0.001 (2)	-0.010 (3)	-0.010 (3)
C3	0.062 (3)	0.048 (3)	0.050 (3)	0.009 (3)	-0.003 (3)	-0.014 (3)
C4	0.063 (3)	0.059 (4)	0.044 (3)	0.027 (3)	0.005 (3)	-0.006 (3)
C5	0.047 (3)	0.051 (3)	0.040 (3)	0.011 (2)	0.002 (2)	-0.005 (3)
C6	0.034 (2)	0.041 (3)	0.033 (2)	0.005 (2)	-0.001 (2)	0.004 (2)
C7	0.036 (2)	0.044 (3)	0.024 (2)	0.003 (2)	-0.0019 (19)	0.003 (2)
C8	0.029 (2)	0.042 (3)	0.034 (2)	0.001 (2)	-0.002 (2)	0.002 (2)
C9	0.035 (2)	0.052 (3)	0.040 (3)	-0.002 (2)	-0.002 (2)	-0.003 (2)
C10	0.030 (2)	0.050 (3)	0.027 (2)	0.000 (2)	0.000(2)	0.003 (2)
C11	0.034 (2)	0.036 (3)	0.028 (2)	0.001 (2)	-0.004 (2)	0.001 (2)
C12	0.037 (2)	0.038 (3)	0.031 (2)	-0.001 (2)	-0.004 (2)	0.001 (2)
C13	0.045 (3)	0.043 (3)	0.039 (3)	0.007 (2)	-0.006 (3)	-0.004 (3)
C14	0.052 (3)	0.041 (3)	0.042 (3)	-0.007 (2)	-0.020 (3)	0.005 (2)
C15	0.046 (3)	0.043 (3)	0.040 (3)	-0.013 (2)	-0.007 (2)	0.003 (3)
C16	0.035 (2)	0.046 (3)	0.037 (3)	-0.003 (2)	0.001 (2)	-0.001 (2)
C17	0.053 (3)	0.069 (4)	0.049 (3)	0.000 (3)	0.016 (2)	-0.014 (3)
C18	0.048 (3)	0.104 (5)	0.063 (4)	-0.023 (3)	-0.009 (3)	0.027 (4)

Geometric parameters (Å, °)

1				
O1—C9	1.21	3 (5)	C13—C14	1.390 (6)

O2—C12	1.365 (5)	C14—C15	1.376 (6)
O2—C17	1.423 (5)	C15—C16	1.374 (6)
O3—C15	1.376 (5)	С2—Н2	0.9300
O3—C18	1.411 (6)	С3—Н3	0.9300
C1—C2	1.385 (6)	С4—Н4	0.9300
C1—C6	1.380 (6)	С5—Н5	0.9300
C1—C9	1.470 (6)	С7—Н7А	0.9700
C2—C3	1.382 (6)	С7—Н7В	0.9700
C3—C4	1.379 (6)	C10—H10	0.9300
C4—C5	1.399 (6)	C13—H13	0.9300
C5—C6	1.383 (6)	C14—H14	0.9300
C6C7	1.507 (6)	C16—H16	0.9300
C ² C ²	1.506 (5)	C17—H17A	0.9600
$C_8 = C_{10}$	1.307 (0)	C17—H17B	0.9600
$C_{0} = C_{10}$	1.559 (0)		0.9000
C_{10}	1.432(0)		0.9000
$C_{11} = C_{12}$	1.406 (5)	C18—H18C	0.9000
C12-C13	1.400 (0)		0.9000
$O_{1} = O_{1}^{i}$	3 259 (5)		2 8600
	3 384 (5)		2.8600
$02C4^{ii}$	3 351 (6)	C15H7P ^{vii}	3 0000
01H10	2 5200	C16H18C	2 7500
01H2	2 9100	C16···H7B	3.0500
O1···H7A ⁱ	2.4700	С16…Н7А	3.0200
O2…H10	2.3000	C16…H7B ^{vii}	2.9900
O3…H18B ⁱⁱⁱ	2.6700	C16…H18A	2.7500
C3···C8 ^{iv}	3.572 (6)	С17…Н13	2.4900
C3····C9 ^{iv}	3.409 (6)	С18…Н16	2.5200
C4···C7 ^{iv}	3.508 (6)	H2…O1	2.9100
C4···C8 ^{iv}	3.411 (6)	H2…H18A ^x	2.5600
C4···O2 ^v	3.351 (6)	H7A…C4 ^{vii}	2.9600
C4…C17 ^v	3.569 (6)	H7A…C5 ^{vii}	3.0700
C5…C17 ^v	3.579 (6)	H7A…C16	3.0200
$C5 \cdots O2^{v}$	3.384 (5)	H7A…H16	2.2800
C6…C11 ^{iv}	3.476 (6)	H7A…O1 ^{vi}	2.4700
C6···C10 ^{iv}	3.529 (6)	H7B···C11 ^{iv}	2.9300
C7···C11 ^{iv}	3.552 (6)	H7B···C12 ^{iv}	2.8800
C7…O1 ^{vi}	3.259 (5)	H7B···C13 ^{iv}	2.8800
C7…C16	3.207 (6)	H7B…C14 ^{iv}	2.9500
C7····C4 ^{vii}	3.508 (6)	H7B···C15 ^{iv}	3.0000
C7···C12 ^{iv}	3.508 (6)	H7B···C16 ^{iv}	2.9900
C8···C12 ^{iv}	3.536 (6)	H7B…C16	3.0500
C8····C4 ^{vii}	3.411 (6)	H7B…H16	2.3200

C8···C3 ^{vii}	3.572 (6)	H10…O1	2.5200
C9···C3 ^{vii}	3.409 (6)	H10O2	2.3000
C10····C6 ^{vii}	3.529 (6)	H13…C17	2.4900
C11····C7 ^{vii}	3.552 (6)	H13…H17A	2.3000
C11····C6 ^{vii}	3.476 (6)	H13…H17C	2.2700
C12····C8 ^{vii}	3.536 (6)	H14…H18C ^{vii}	2.5800
C12···C7 ^{vii}	3.508 (6)	H16…C7	2.5400
C13···C17 ^{viii}	3.512 (6)	H16…C8	2.8500
C14···C17 ^{viii}	3.321 (6)	H16…C18	2.5200
C15···C17 ^{viii}	3.597 (6)	H16…H7A	2.2800
C16···C7	3.207 (6)	Н16…Н7В	2.3200
C17····C5 ⁱⁱ	3.579 (6)	H16…H18A	2.2400
C17···C15 ^{ix}	3.597 (6)	H16…H18C	2.4000
C17···C4 ⁱⁱ	3.569 (6)	H17A…C10 ^{vii}	2.8600
C17C13 ^{ix}	3.512 (6)	H17A···C13	2.7500
$C17 \cdots C14^{ix}$	3.321 (6)	H17A…H13	2.3000
C4H7A ^{iv}	2 9600	H17B····C4 ⁱⁱ	2.9200
C4H17P ^V	2 9200	H17D	2.9200
	3.0700	H17C····C13	2.9200
	2 9200	H17CH13	2.7100
C3H1/B C7H16	2.5200		2.2700
	2.5400		2.9800
	2.8500		2.8600
	2.8600		2.9600
C11···H7B ^{vii}	2.9300		2.7500
C12…H7B ^{vn}	2.8800	H18A…H16	2.2400
С13…Н17А	2.7500	$H18A\cdots H2^{x_1}$	2.5600
C13…H7B ^{vii}	2.8800	H18B···O3 ^x	2.6700
C13···H17C	2.7100	H18C···C16	2.7500
С13…Н17С ^{үш}	2.9800	H18C···H14 ^{IV}	2.5800
C14···H7B ^{vn}	2.9500	H18C…H16	2.4000
C12—O2—C17	118.1 (3)	C3—C2—H2	121.00
C15 - O3 - C18	117.0 (4)	C2 - C3 - H3	120.00
$C_2 = C_1 = C_0$	121.7(4) 128.5(4)	$C_4 - C_5 - H_5$	120.00
$C_{2} = C_{1} = C_{2}$	109 8 (4)	С5—С4—Н4	120.00
C1—C2—C3	118.1 (4)	C4—C5—H5	121.00
C2—C3—C4	120.8 (4)	С6—С5—Н5	121.00
C3—C4—C5	120.8 (4)	С6—С7—Н7А	111.00
C4—C5—C6	118.3 (4)	С6—С7—Н7В	111.00
C1—C6—C5	120.2 (4)	С8—С7—Н7А	111.00
C1—C6—C7	112.1 (3)	С8—С7—Н7В	111.00
C5—C6—C7	127.7 (4)	Н7А—С7—Н7В	109.00
C6—C7—C8	103.5 (3)	C8—C10—H10	115.00

C7—C8—C9	108.4 (3)	C11—C10—H10	115.00
C7—C8—C10	132.3 (4)	C12—C13—H13	120.00
C9—C8—C10	119.3 (4)	C14—C13—H13	120.00
O1—C9—C1	127.1 (4)	C13—C14—H14	120.00
O1—C9—C8	126.6 (4)	C15—C14—H14	120.00
C1—C9—C8	106.3 (3)	C11—C16—H16	119.00
C8—C10—C11	130.6 (4)	C15—C16—H16	119.00
C10-C11-C12	118.7 (4)	O2—C17—H17A	109.00
C10—C11—C16	123.4 (4)	O2—C17—H17B	110.00
C12—C11—C16	117.8 (4)	O2—C17—H17C	109.00
O2—C12—C11	116.2 (3)	H17A—C17—H17B	110.00
O2—C12—C13	123.2 (3)	H17A—C17—H17C	109.00
C11—C12—C13	120.5 (4)	H17B—C17—H17C	109.00
C12—C13—C14	119.7 (4)	O3—C18—H18A	109.00
C13—C14—C15	120.6 (4)	O3—C18—H18B	109.00
O3—C15—C14	115.7 (4)	O3—C18—H18C	109.00
O3—C15—C16	124.4 (4)	H18A—C18—H18B	109.00
C14—C15—C16	120.0 (4)	H18A—C18—H18C	109.00
C11—C16—C15	121.3 (4)	H18B—C18—H18C	110.00
С1—С2—Н2	121.00		
C17—O2—C12—C11	-179.2 (3)	C6—C7—C8—C10	-179.9 (4)
C17—O2—C12—C13	1.8 (6)	C7—C8—C9—O1	179.0 (4)
C18—O3—C15—C14	-163.3 (4)	C7—C8—C9—C1	-0.7 (4)
C18—O3—C15—C16	16.5 (6)	C10—C8—C9—O1	-0.4 (6)
C6—C1—C2—C3	-0.8 (6)	C10—C8—C9—C1	180.0 (4)
C9—C1—C2—C3	178.0 (4)	C7—C8—C10—C11	-0.8 (8)
C2—C1—C6—C5	0.7 (6)	C9—C8—C10—C11	178.4 (4)
C2—C1—C6—C7	179.4 (4)	C8—C10—C11—C12	179.3 (4)
C9—C1—C6—C5	-178.3 (4)	C8-C10-C11-C16	-1.9 (7)
C9—C1—C6—C7	0.5 (5)	C10-C11-C12-O2	-2.4 (5)
C2—C1—C9—O1	1.6 (7)	C10-C11-C12-C13	176.6 (4)
C2—C1—C9—C8	-178.8 (4)	C16—C11—C12—O2	178.8 (3)
C6—C1—C9—O1	-179.5 (4)	C16-C11-C12-C13	-2.2 (6)
C6—C1—C9—C8	0.1 (5)	C10-C11-C16-C15	-177.4 (4)
C1—C2—C3—C4	0.4 (6)	C12-C11-C16-C15	1.4 (6)
C2—C3—C4—C5	0.1 (7)	O2-C12-C13-C14	-178.9 (4)
C3—C4—C5—C6	-0.3 (6)	C11—C12—C13—C14	2.2 (6)
C4—C5—C6—C1	-0.1 (6)	C12-C13-C14-C15	-1.3 (6)
C4—C5—C6—C7	-178.7 (4)	C13—C14—C15—O3	-179.6 (4)
C1—C6—C7—C8	-0.9 (4)	C13-C14-C15-C16	0.5 (6)
C5—C6—C7—C8	177.8 (4)	O3-C15-C16-C11	179.6 (4)
C6—C7—C8—C9	0.9 (4)	C14—C15—C16—C11	-0.6 (6)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*; (ii) *x*-1/2, -*y*+1/2, *z*+1; (iii) -*x*+2, -*y*+1, *z*+1/2; (iv) *x*, *y*, *z*-1; (v) *x*+1/2, -*y*+1/2, *z*-1; (vi) *x*+1/2, -*y*+1/2, *z*-1; (vii) *x*+1/2, *z*+1/2; (viii) -*x*+1, -*y*+1, *z*-1/2; (ix) -*x*+1, -*y*+1, *z*+1/2; (x) *x*-1/2, -*y*+1/2, *z*-1; (xi) *x*+1/2, -*y*+1/2, *z*+1; (xii) -*x*+2, -*y*+1, *z*-1/2.

Hydrogen-bond geometry $(Å, \circ)$

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

C7—H7A…O1 ^{vi}	0.97	2.47	3.259 (5)	139
C10—H10…O1	0.93	2.52	2.891 (5)	104
С10—Н10…О2	0.93	2.30	2.710 (5)	106
C7—H7B···Cg1 ^{iv}	0.97	2.59	3.459 (4)	150
C17—H17C···Cg1 ^{ix}	0.96	2.73	3.504 (4)	138

Symmetry codes: (vi) *x*+1/2, -*y*+1/2, *z*; (iv) *x*, *y*, *z*-1; (ix) -*x*+1, -*y*+1, *z*+1/2.

Fig. 1

Fig. 2

